Fault Detection and Identification with Kernel Principal Component Analysis and Long Short-Term Memory Artificial Neural Network Combined Method
نویسندگان
چکیده
A new fault detection and identification approach is proposed. The kernel principal component analysis (KPCA) first applied to the data for reducing dimensionality, occurrence of faults determined by means two statistical indices, T2 Q. K-means clustering algorithm then adopted analyze perform clustering, according type fault. Finally, using a long short-term memory (LSTM) neural network. performance proposed technique compared with (PCA) method in early detecting malfunctions on continuous stirred tank reactor (CSTR) system. Up 10 sensor other system degradation conditions are considered. LSTM network three machine learning techniques, namely support vector (SVM), K-nearest neighbors (KNN) algorithm, decision trees, determining results indicate superior suggested methodology both identification.
منابع مشابه
the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولModelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network
One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملEvolving Neural Network for Kernel Principal Component Analysis
In the paper kernel evolving neural network and its learning algorithm are investigated. The proposed system solves the problem of finding the eigenvectors and the corresponding principal components in on-line mode in an environment where hidden in the experimental data interdependencies are nonlinear and can change throw time.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2023
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms12060583